A TatABC-Type Tat Translocase Is Required for Unimpaired Aerobic Growth of Corynebacterium glutamicum ATCC13032

نویسندگان

  • Dan Oertel
  • Sabrina Schmitz
  • Roland Freudl
چکیده

The twin-arginine translocation (Tat) system transports folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of plant chloroplasts. Escherichia coli and other Gram-negative bacteria possess a TatABC-type Tat translocase in which each of the three inner membrane proteins TatA, TatB, and TatC performs a mechanistically distinct function. In contrast, low-GC Gram-positive bacteria, such as Bacillus subtilis, use a TatAC-type minimal Tat translocase in which the TatB function is carried out by a bifunctional TatA. In high-GC Gram-positive Actinobacteria, such as Mycobacterium tuberculosis and Corynebacterium glutamicum, tatA, tatB, and tatC genes can be identified, suggesting that these organisms, just like E. coli, might use TatABC-type Tat translocases as well. However, since contrary to this view a previous study has suggested that C. glutamicum might in fact use a TatAC translocase with TatB only playing a minor role, we reexamined the requirement of TatB for Tat-dependent protein translocation in this microorganism. Under aerobic conditions, the misassembly of the Rieske iron-sulfur protein QcrA was identified as a major reason for the severe growth defect of Tat-defective C. glutamicum mutant strains. Furthermore, our results clearly show that TatB, besides TatA and TatC, is strictly required for unimpaired aerobic growth. In addition, TatB was also found to be essential for the secretion of a heterologous Tat-dependent model protein into the C. glutamicum culture supernatant. Together with our finding that expression of the C. glutamicum TatB in an E. coli ΔtatB mutant strain resulted in the formation of an active Tat translocase, our results clearly indicate that a TatABC translocase is used as the physiologically relevant functional unit for Tat-dependent protein translocation in C. glutamicum and, most likely, also in other TatB-containing Actinobacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TatABC overexpression improves Corynebacterium glutamicum Tat-dependent protein secretion.

The twin-arginine translocation (Tat) pathway in Corynebacterium glutamicum has been described previously. The minimal functional Tat system in C. glutamicum required TatA and TatC but did not require TatB, although this component was required for maximal efficiency of Tat-dependent secretion. We previously demonstrated that Chryseobacterium proteolyticum pro-protein glutaminase (pro-PG) and St...

متن کامل

Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect L-Lysine Production in Corynebacterium glutamicum.

Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriche...

متن کامل

Process inhomogeneity leads to rapid side product turnover in cultivation of Corynebacterium glutamicum

BACKGROUND Corynebacterium glutamicum has large scale industrial applications in the production of amino acids and the potential to serve as a platform organism for new products. This means the demand for industrial process development is likely to increase. However, large scale cultivation conditions differ from laboratory bioreactors, mostly due to the formation of concentration gradients at ...

متن کامل

Functional reconstitution of bacterial Tat translocation in vitro.

The Tat (twin-arginine translocation) pathway is a Sec-independent mechanism for translocating folded preproteins across or into the inner membrane of Escherichia coli. To study Tat translocation, we sought an in vitro translocation assay using purified inner membrane vesicles and in vitro synthesized substrate protein. While membrane vesicles derived from wild-type cells translocate the Sec-de...

متن کامل

Substrate-Dependent Assembly of the Tat Translocase as Observed in Live Escherichia coli Cells

The twin-arginine translocation (Tat) pathway guides fully folded proteins across membranes of bacteria, archaea and plant chloroplasts. In Escherichia coli, Tat-specific transport is executed in a still largely unknown manner by three functionally diverse membrane proteins, termed TatA, TatB, and TatC. In order to follow the intracellular distribution of the TatABC proteins in live E. coli cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015